Discrete Random Variables over Domains

نویسنده

  • Michael W. Mislove
چکیده

In this paper we initiate the study of discrete random variables over domains. Our work is inspired by work of Daniele Varacca, who devised indexed valuations as models of probabilistic computation within domain theory. Our approach relies on new results about commutative monoids defined on domains that also allow actions of the non-negative reals. Using our approach, we define two such families of real domain monoids, one of which allows us to recapture Varacca’s construction of the Plotkin indexed valuations over a domain. Each of these families leads to the construction of a family of discrete random variables over domains, the second of which forms the object level of a continuous endofunctor on the categories RB (domains that are retracts of bifinite domains), and on FS (domains where the identity map is the directed supremum of deflations finitely separated from the identity). The significance of this last result lies in the fact that there is no known category of continuous domains that is closed under the probabilistic power domain, which forms the standard approach to modeling probabilistic choice over domains. The fact that RB and FS are Cartesian closed and also are closed under a power domain of discrete random variables means we can now model, e.g., the untyped lambda calculus extended with a probabilistic choice operator, implemented via random variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rethinking the design of real-coded evolutionary algorithms: Making discrete choices in continuous search domains

Although real-coded evolutionary algorithms (EAs) have been applied to optimization problems for over thirty years, the convergence properties of these methods remain poorly understood. We discuss the use of discrete random variables to perform search in real-valued EAs. Although most real-valued EAs perform mutation with continuous random variables, we argue that EAs using discrete random vari...

متن کامل

Efficient Inference in Large Discrete Domains

In this paper we examine the problem of inference in Bayesian Networks with discrete random variables that have very large or even unbounded domains. For example, in a domain where we are trying to identify a person, we may have variables that have as domains, the set of all names, the set of all postal codes, or the set of all credit card numbers. We cannot just have big tables of the conditio...

متن کامل

Probabilistic Inference with Large Discrete Domains

The straightforward representation of many real world problems is in terms of discrete random variables with large or infinite domains. For example, in a domain where we are trying to identify a person, we may have variables that have as domains, a set of all names, a set of all postal codes, and a set of all credit card numbers. The task usually reduces to performing probabilistic inference, i...

متن کامل

PERFORMANCE OF DIFFERENT ANT-BASED ALGORITHMS FOR OPTIMIZATION OF MIXED VARIABLE DOMAIN IN CIVIL ENGINEERING DESIGNS

Ant colony optimization algorithms (ACOs) have been basically introduced to discrete variable problems and applied to different research domains in several engineering fields. Meanwhile, abundant studies have been already involved to adapt different ant models to continuous search spaces. Assessments indicate competitive performance of ACOs on discrete or continuous domains. Therefore, as poten...

متن کامل

The Non-approximability of Non-Boolean Predicates

Abstract. Constraint satisfaction programs where each constraint depends on a constant number of variables have the following property: The randomized algorithm that guesses an assignment uniformly at random satisfies an expected constant fraction of the constraints. By combining constructions from interactive proof systems with harmonic analysis over finite groups, Håstad showed that for sever...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005